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Abstract. We report on the OpenLoops generator for one-loop matrix elements and its
application to four-lepton production in association with up to one jet. The open loops
algorithm uses a numerical recursion to construct the numerator of one-loop Feynman diagrams
as functions of the loop momentum. In combination with tensor integrals this results in a highly
efficient and numerically stable matrix element generator. In order to obtain a fully automated
setup for the simulation of next-to-leading order scattering processes we interfaced OpenLoops

to the Sherpa Monte Carlo event generator.

1. Introduction
The simulation of multi-particle scattering amplitudes with next-to-leading order (NLO)
accuracy is a key requirement for the analysis of the data taken at the Large Hadron Collider.
The necessity to manage the large number of processes to be considered at the experiments
demands for integrated frameworks which automate the full tool-chain from the matrix element
generation to hadronic final states via Monte Carlo event generators.

Regarding the NLO matrix elements, in the last few years the approach based on tensor
integral reduction and algebraic methods was pushed to processes which involve up to 6 external
particles [1, 2]. While this method can lead to efficient code its applicability is limited by
expensive algebraic simplifications and the size of the process specific code. On the other hand
the application of on-shell reduction techniques e. g. in combination with tree-level recursions
lead to a high degree of automation of one-loop generators [3–8].

The open loops algorithm [9] exhibits a new way to calculate loop amplitudes using a tree-like
recursion for loop momentum polynomials [10] and tensor integrals. The algorithm can be fully
automated and achieves high efficiency and numerical stability. A generator based on a similar
approach with a Dyson-Schwinger recursion and tensor integrals was presented in [11].
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We interfaced our OpenLoops implementation [9] to Sherpa [12] which provides us with Monte
Carlo integration, MC@NLO matching [13–15] to the Sherpa parton shower and MEPS@NLO
multi-jet merging [16, 17]. Within this framework we calculated QCD corrections to four lepton
production as a background to H → WW∗ → `ν`ν [18]. After the discovery of the Higgs
boson [19, 20] this channel continues to play an important role in the investigation of its
properties. To render the signal visible it is necessary to apply jet vetoes and perform the
analysis in exclusive jet bins, in particular to suppress the background due to tt̄ production.
The MEPS@NLO method allows us to retain NLO accuracy in the individual jet bins and resum
potentially large logarithms.

The production of two W-bosons including leptonic decays was studied extensively in the
literature [21–26] and also matched to parton showers with the MC@NLO [13] and with the
POWHEG method [27, 28]. W-pair production in association with a jet [29–31] has been studied
as well, however previously to our simulation not matched to a parton shower.

In section 2 we recapitulate the open loops algorithm and in section 3 we introduce the
Sherpa+OpenLoops framework. Results for the four lepton production are shown in section 4.

2. The open loops algorithm and its implementation in OpenLoops

Tree-level amplitudesM and one-loop corrections δM are handled as sums of tree and one-loop
Feynman diagrams,

M =
∑
d

M(d), δM =
∑
d

δM(d), (1)

allowing for the factorisation of colour factors from the Lorentz structure of the diagrams. This
way the colour reduction can be done once per process, resulting in negligible CPU cost for the
colour summation [32].

Colour stripped tree diagrams are calculated by recursively connecting “sub-trees” starting
from external wave functions. A sub-tree which is obtained from a tree diagram by cutting a
line is represented as a complex n-tuple wβ(i), where β is the spinor or Lorentz index of the cut
propagator and the index i represents the topology, (off-shell) momentum, and particle content,

wβ(i) = i =

k

j

. (2)

Cut lines are marked by dots, and external lines are not depicted. For brevity, quartic vertices
are not shown explicitly, but their inclusion is straightforward. In terms of n-tuples, the recursion
step reads

wβ(i) =
Xβ
γδ(i, j, k) wγ(j) wδ(k)

p2i −m2
i + iε

, (3)

where Xβ
γδ/(p

2
i −m2

i + iε) describes a vertex connecting i, j, k, and a propagator attached to i.
The recursion terminates when the sub-trees which are needed to build all tree diagrams have
been generated. Sub-trees which appear in more than one diagram are calculated once and
used in all occurrences. The numerical implementation of the algorithm is based on universal
routines which implement all wave functions, propagators and vertices corresponding to the
Feynman rules of the theoretical model.



A colour stripped n-point one-loop diagram δA(d) is regarded as an ordered set of n sub-trees,
In = {i1, . . . , in}, connected by loop propagators,

δA(d) =

∫
dDq N (In; q)

D0D1 . . . Dn−1
=

n − 1

0

1

in−1in

i2i1

. (4)

The denominators Di = (q+ pi)
2−m2

i + iε depend on the loop momentum q, external momenta
pi, and internal masses mi. All other contributions from loop propagators, vertices, and external
sub-trees are summarised in the numerator, which is a polynomial of degree R ≤ n in the loop
momentum,

N (In; q) =

R∑
r=0

Nµ1...µr(In) qµ1 . . . qµr . (5)

Momentum-shift ambiguities are eliminated by setting p0 = 0, singling out the D0 propagator.
The loop momentum q flowing through this propagator is marked by an arrow in (4). After
cutting the D0 propagator the numerator function can be constructed by recursively attaching
sub-trees to the loop

N β
α (In; q) = In =

in

In−1 . (6)

The indices α, β stand for the spinor rsp. Lorentz indices of the cut propagator. Analogously to

eq. (3) the numerator N β
α is built by recursively attaching sub-trees,

N β
α (In; q) = Xβ

γδ(In, in, In−1) N γ
α (In−1; q) wδ(in), (7)

where Xβ
γδ are the same vertices as in the tree recursion. Separating the loop momentum from

its coefficients

N β
α (In; q) =

R∑
r=0

N β
µ1...µr;α(In) qµ1 . . . qµr , Xβ

γδ = Y β
γδ + Zβµ;γδq

µ (8)

leads to a recursion relation for the so-called open loops which encode the functional dependence
of the numerator on the loop momentum

N β
µ1...µr;α(In) =

[
Y β
γδ N γ

µ1...µr;α(In−1) + Zβµ1;γδ N
γ
µ2...µr;α(In−1)

]
wδ(in). (9)

The recursion terminates with the contraction of the α, β indices Nµ1...µr = Nα
µ1...µr;α, resulting

in the coefficients of the tensor integral representation of the diagram

δA(d) =

R∑
r=0

Nµ1...µr(In) Tµ1...µrn,r with Tµ1...µrn,r =

∫
dDq qµ1 . . . qµr

D0D1 . . . Dn−1
. (10)



Table 1. Processes which are available to the ATLAS and CMS Monte Carlo working groups.
Vector boson production (V = Z/W±) includes leptonic decays except for V V V . Lower jet
multiplicities are implicitly understood. Brackets denote that the process will be available with
the next update.

W/Z γ jets HQ pairs single-top Higgs

V + 3j γ + 3j 3(4)j tt̄+ 1j tb+ 1j (H + 2j)
V V + 1(2)j γγ + 1(2)j tt̄V + 0(1)j t+ 1(2)j V H + 1j

gg → V V + 1j V γ + 1(2)j bb̄V + 0(1)j tW + 0(1)j tt̄H
V V V + 0(1)j qq → Hqq + 0(1)j

The tensor integrals Tµ1...µrn,r are subsequently reduced to m-point scalar integrals Tm,0 with m =
1, 2, 3, 4. Alternatively, the OPP method [33] avoids tensor integrals through a direct connection
between the numerator N (In; q) and the scalar-integral representation of the amplitude. The
coefficients of the scalar integrals are determined by multiple evaluations of N (In; q) for loop
momenta q which satisfy multiple-cut conditions of the form Di = Dj = · · · = 0.

We implemented the described algorithm in the program OpenLoops, a fully automatic
generator for QCD corrections to Standard Model processes. Feynman diagrams are generated
by FeynArts [34] and Mathematica organises the open loops recursion and generates Fortran 90

code. For the reduction of the tensor integrals we use the Collier [35] library which implements
the Denner-Dittmaier reduction procedure [36, 37] and the scalar integrals of ref. [38]. The
Collier library cures numerical instabilities which arise due to vanishing Gram determinants
and other kinematic quantities by applying expansions in these quantities, thus allowing for the
numerically stable evaluation of tensor integrals in double precision.

Rational terms of type R2 are reconstructed by counterterm-like Feynman rules [39]. In order
to asses the performance and the numerical stability we considered the 2 → 2, 3, 4 reactions
uū→W+W−+ng, ud̄→W+g+ng, uū→ tt̄+ng, and gg→ tt̄+ng, with n = 0, 1, 2 gluons [9].
For the most complicated 2→ 4 processes the runtime per phase space point is below 1 second
on an i5-750 CPU (single core) and the size of a compiled process library is of the order of at
most 1 MB. The average number of correct digits ranges from 11 to 15 for the 12 processes and
the probability to encounter numerical precision below 10−5 and 10−3 is less than 2 and 0.1,
respectively.

3. NLO simulations with Sherpa+OpenLoops

For realistic simulations of NLO processes the matrix elements must be combined with
parton showers and hadronisation. Especially for the description of exclusive observables the
resummation of large logarithms as provided by a parton shower is imperative.

We wrote an interface to the Sherpa Monte Carlo event generator which provides us with
Monte Carlo integration, infra-red subtraction, real corrections, MC@NLO matching to its
parton shower and MEPS@NLO merging of different jet multiplicities, providing NLO plus
parton shower accuracy in the individual jet bins. The interface works in a fully automatic way,
loading process libraries on request at runtime. The matrix element generation is steered by
standard Sherpa runcards.

The Sherpa+OpenLoops framework is available to the Monte Carlo working groups of the
ATLAS and CMS collaborations, including the set of processes shown in table 1. All provided
processes were thoroughly validated against an independent in-house matrix element generator.

Apart from the 4 lepton study the framework was applied to tt̄bb̄ production with massive



Table 2. Exclusive 0- and 1-jet bin µ+νµe−ν̄e+jets cross sections in the signal (S) and
control (C) regions of the ATLAS analysis at 8 TeV. Fixed-order NLO results are compared
to MC@NLO and MEPS@NLO predictions. Scale uncertainties are shown as σ ± δQCD ± δres,
where δQCD and δres correspond to variations of the QCD (µR, µF) and resummation (µQ) scales,
respectively. Statistical errors are given in parenthesis.

0-jet bin NLO 4`(+1j) MC@NLO 4`(+1j) MEPS@NLO 4`(+1j)

σS [fb] 34.28(9) +2.1%
−1.6% 32.52(8) +2.1%

−0.8%
+1.2%
−0.7% 33.81(12) +1.4%

−2.2%
+2.0%
−0.4%

σC [fb] 55.76(9) +2.0%
−1.7% 52.28(9) +1.4%

−0.7%
+1.4%
−1.1% 54.18(15) +1.4%

−1.9%
+2.5%
−0.4%

1-jet bin NLO 4`(+1j) MC@NLO 4`(+1j) MEPS@NLO 4`(+1j)

σS [fb] 8.99(4) +4.9%
−9.5% 8.02(4) +8.5%

−6.4%
+0%
−3.1% 9.37(9) +2.6%

−2.7%
+2.5%
−0.0%

σC [fb] 26.50(8) +6.4%
−12.5% 24.58(8) +6.1%

−6.5%
+1.2%
−3.0% 28.32(13) +3.1%

−4.7%
+4.1%
−0.0%

b quarks, matched to the parton shower [40].

4. Irreducible background to H → WW∗

We used Sherpa+OpenLoops§ for the simulation of µ+νµe−ν̄e(+j) production (in the following
referred to as 4 leptons or 4`(+j)) as irreducible background to H → WW∗ at a centre-of-
mass energy of 8 TeV, including off-shell and non-resonant contributions and all respective
interferences [18]. To assess the effects of the parton shower and the merging we calculated
the processes in three different approximations, fixed order NLO, MC@NLO, and MEPS@NLO.

As input parameters we use

MW = 80.399 GeV, MZ = 91.1876 GeV, ΓW = 2.0997 GeV, ΓZ = 2.5097 GeV (11)

for the vector boson masses and widths. The electroweak mixing angle is obtained from the
complex W- and Z-boson masses [41] as

cos2 θw =
M2

W − iΓWMW

M2
Z − iΓZMZ

, (12)

and the electromagnetic fine-structure constant is derived from the Fermi constant Gµ =
1.16637 · 10−5 GeV−2 in the Gµ-scheme as

α−1 =
π√

2GµM2
W

(
1− M2

W

M2
Z

)−1
= 132.348905 . (13)

As for the parton distribution functions we chose five-flavour CT10 NLO [42] with the respective
running strong coupling αS . To avoid any overlap with tt̄ production, only partonic channels
without external b quarks are considered. This requires a prescription to separate W+W− + j
from top pair and single top production which treats infrared singularities and large logarithms
arising from g→ bb̄ splittings in a well defined way [18]. Such a prescription is not unique and
reflects in an ambiguity of the order of 1% which disappears when W+W− + j and W+W−bb̄
are consistently merged.

§Results were obtained with a pre-release version of Sherpa 2.0 corresponding to SVN revision 21825.
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Figure 1. Transverse mass distributions for the ATLAS analysis at 8TeV after control (left)
and signal (right) cuts in the 0-jet (top) and 1-jet (bottom) bins. The lines show MEPS@NLO
results (black solid), MC@NLO (red dashed) and NLO (blue dashed) with error bands for
µR and µF factor 2 variations (red) and µQ factor

√
2 variations (blue), and quadratically

added errors (yellow). Error bands are colour additive (yellow+blue=green, yellow+red=orange,
yellow+red+blue=brown).

Table 2 shows the cross sections for the three different simulations in the signal and control
regions of the ATLAS analysis. Corresponding results for the CMS analysis can be found in [18].
The default renormalisation (µR), factorisation (µF ) and resummation (µQ) scale is chosen as
the average transverse energy of the W bosons,

µ0 =
1

2

(
ET,W+ + ET,W−

)
, where E2

T,W = M2
W + (~pT,` + ~pT,ν)2. (14)

QCD scale uncertainties are estimated by factor 2 variations of µR and µF , excluding opposite
direction variations. The resummation scale µQ is varied by a factor

√
2. In the parton shower

and for the jet emission in the 4`+ j matrix elements for the MEPS@NLO simulation the scale



choice is based on the CKKW technique which adapts the αS scale to the transverse momentum
of the jet. The merging scale Qcut is set to 20 GeV. Figure 1 shows the mT distributions in the
0- and 1-jet bin in the signal and control regions as defined by ATLAS.

The NLO and MEPS@NLO results agree fairly well with sizeable deviations only in the large
mT region in the 1-jet bin. The good agreement suggests that resummation effects are rather
small. The discrepancies between MC@NLO and MEPS@NLO however reach up to 20% in the
1-jet bin with moderate shape distortions. This is not surprising given that the jet emission in
the MC@NLO simulation is only leading order accurate.

In the full analysis [18] we also study squared quark-loop contributions which form a finite
and gauge invariant subset of NNLO corrections and can have sizeable impact due to opening
gluon fusion channels, especially with signal cuts applied. Furthermore several other observables
relevant for the experimental analysis are considered as well as the impact of the different
approximations on the description of jet veto effects.

5. Conclusions
We implemented a fully automatic generator for NLO QCD corrections to Standard Model
processes based on the open loops algorithm to construct loop momentum polynomials by a
numerical recursion. With its high performance and numerical stability it is suited to address
problems which involve a large number of multi-leg partonic processes. The matrix element
generator was interfaced to Sherpa and a library for a large set of processes is available to the
ATLAS and CMS Monte Carlo working groups.

Within the Sherpa+OpenLoops framework we performed detailed simulations of the
production of 4 leptons with up to one jet as a background for the H → WW∗ analysis of
the ATLAS and CMS experiments and studied the impact of parton shower and merging effects.
The MEPS@NLO simulation which provides NLO accuracy and resummation in both jet bins
is our best prediction and exhibits scale uncertainties below 5%. This approach is particularly
suited to study exclusive observables and provides more realistic error estimates.
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