
Recent developments on Form

Takahiro Ueda1 and Jos Vermaseren2

1 Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),
D-76128 Karlsruhe, Germany
2 Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands

E-mail: takahiro.ueda@kit.edu, t68@nikhef.nl

Abstract. We report on recent developments on the open source computer algebra system
Form. Especially we focus on the code optimization implemented after the release of Form
version 4.0 in March 2012.

1. Introduction
Form [1] is one of widely used programs for symbolic manipulation of huge formulas with an
arbitrary number of terms appearing in theoretical calculations based on perturbative quantum
field theories. Since March 2012 Form version 4.0 has been released. The new features
introduced in this version include:

• Polynomial factorization. Form has a functionality of factorization of multivariate
polynomials at three levels: function arguments, expressions and $-variables.

• Rational function arithmetic. Form has a mode in which rational functions are considered
as coefficients of terms in sorting. There are also functions which provide basic operations
on polynomials: polynomial division, polynomial GCD and so on.

There are parallel versions of Form, which automatically distribute the computation over
many CPUs. One is TForm [2], which is based on POSIX threads and works with multi-core
processors. The other is ParForm [3, 4] based on MPI, which can run on computer clusters
with fast network connections. The above newly introduced features in the version 4.0 should
also work with the parallel versions.

Form is continuously being developed even after the release of the version 4.0, for some bug
fixes and adding more features1. One of the recently added features, which will be considered
as a part of the next release Form 4.1, is code optimization.

After performing symbolic manipulation on formulas in an analytic way, one occasionally
needs to export the result as a program code, e.g., in Fortran or C, for further numerical
computations such as Monte Carlo integrations. If a lengthy formula will be evaluated millions
of times, it is worth compactifying the expression such that the number of operations needed to
evaluate it becomes as small as possible for fast computation, even if the optimization needs a

1 One can access to the Git repository from https://github.com/vermaseren/form. For example, a bug in the
disk-to-disk sorting, which may give a wrong result, was fixed on 23 July 2013. On the other hand, a new feature
introduced on 13 August 2013 changed the store file format and executables compiled from the sources after this
date cannot read old store files.

non-negligible time. Form 4.1 will be equipped with the code optimization to reduce the cost
of evaluations of multivariate polynomials, which includes an implementation of Monte Carlo
tree search (MCTS) for finding a suitable multivariate Horner scheme [5, 6].

2. Code optimization in Form
As the first example, let us consider the optimization of a polynomial F of three variables x, y
and z:

Symbols x,y,z;

ExtraSymbols vector,v;

Local F = 6*y*z^2 + 3*y^3 - 3*x*z^2 + 6*x*y*z - 3*x^2*z + 6*x^2*y;

Format Fortran;

Format O1,stats=on;

Print;

.end

The special command for the optimization here is Format O1,stats=on. This enables the code
optimization in printing the expression with reporting statistics. Form has several optimization
options and parameters. Form also defines optimization levels O0, O1, O2 and O3 for user
convenience, which are actually certain combinations of the options and parameters. Increasing
the optimization level makes Form try to give the output with fewer operations, at the cost of
more time. The code optimization is internally applied to polynomials containing only numbers
and symbols. Other objects are converted into symbols temporarily, which are substituted back
at the end. For practical use generating a complete code, #Optimize and #Write preprocessor
instructions are provided in order to give more control to users, which we will not discuss here.
The declaration ExtraSymbols vector,v specifies the name of the array that will be introduced
for storing intermediate results during the evaluation.

The output of the above example is as follows:

v(1)=y*z

v(2)= - z + 2*y

v(2)=x*v(2)

v(3)=z**2

v(1)=v(2) - v(3) + 2*v(1)

v(1)=x*v(1)

v(2)=y**2

v(2)=2*v(3) + v(2)

v(2)=y*v(2)

v(1)=v(2) + v(1)

F=3*v(1)

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 0P 10M 5A : 15

The numerical evaluation of F needs 18 multiplications and 5 additions, i.e., 23 operations in
total, if it is done in the original expanded form. Form tries to reduce the number of total
operations assuming that the cost of addition and multiplications are equal. In the optimized
form, the number of operations reduces to 15 operations in total, using the array v for temporary
variables. By changing the optimization level to O2, one will obtain an output with 14 operations.
O3 gives an output with 12 operations.

3. Algorithms
The predefined optimization levels in Form are summarized as follows:

• O0: No optimization.

• O1: The occurrence and reverse occurrence orders followed by common subexpression
elimination are tried for a Honer scheme.

• O2: Besides O1, an extra “greedy” optimization is performed to find more common
subexpressions at the end.

• O3: Monte Carlo tree search is used for finding a good Horner scheme with common
subexpressions. At the end the greedy optimization is performed.

Here we will explain each algorithm.

3.1. Multivariate Horner schemes
For optimizing evaluations of univariate polynomials, it is well-known that a Horner scheme
gives an efficient form for numerical computations:

a(x) =

n∑
i=0

aix
i = a0 + x

(
a1 + x

(
a2 + x(· · ·+ x · an)

))
. (1)

This form takes n multiplications and n additions to calculate a value for a dense polynomial of
degree n.

Horner schemes could be extended for multivariate polynomials rather straightforwardly. One
can choose one of variables of a polynomial and apply a Horner scheme to it, regarding other
variables as constants. Then one can choose another variable from the remaining variables for
the next Horner scheme. This is repeated until a Horner scheme is applied to all the variables.
However, the number of operations that one can obtain after applying a multivariate Horner
scheme depends on in which order the variables are processed.

3.1.1. Occurrence order Traditionally, the occurrence order has been often used for multivariate
Horner schemes. All variables are ordered in how many times they appear in a polynomial.
Applying a Horner scheme to the most-occurring variable gives the largest decrease of the
number of operations at each step, because it factors out the most-occurring variable from the
polynomial.

On the other hand, one may consider the reverse occurrence order. Applying a Horner
scheme to the least-occurring variable at each step, the result may contain more common
subexpressions within the inner parentheses, which can be detected by common subexpression
elimination (CSE). Even though this order usually results more operations as a Horner scheme,
this order could give fewer operations at the end if it is used in a combination with CSE.

3.1.2. Monte Carlo tree search Both occurrence order and reverse occurrence order may not
give the optimal result. For a multivariate polynomial with N variables, the number of possible
orders is N !. One could try all the orders to find the optimal one when N is small, but obviously
it is not practical for large N . Because the orders of the variables can be represented by a search
tree, one may expect a sophisticated tree search algorithm in computer science could be applied
to this problem.

Recently, a new tree search technique, Monte Carlo tree search (MCTS) [7], which was
developed in artificial intelligence and game theory, was applied to this problem and it turned
out that MCTS actually can give a good order within a reasonable amount of time [5].
Roughly speaking, MCTS picks up some samples from all the orders, at first randomly, but it
stochastically gives priority to the neighborhood of good solutions as more samples are collected.
It works efficiently if one can expect that good solutions are clustered in branches of the search
tree. Note that MCTS is a Monte Carlo algorithm, therefore it may give a different result at
each run.

Table 1. Form run time, gcc compilation time (compile) and the time to evaluate the compiled
formula 105 times (run) for the resultant with m = 7 and n = 6. All times are in seconds on an
Opteron 2.6GHz processor. The gcc version is 4.6.2.

Format O0 Format O1 Format O2 Format O3

Operations 587880 71262 55685 36146
Form time 0.12 1.66 65.43 2398
gcc -O0 compile 29.02 6.33 5.64 3.36
run 119.66 13.61 12.24 7.52
gcc -O1 compile 3018.6 295.96 199.47 80.82
run 24.30 6.88 6.12 3.58
gcc -O2 compile 3104.4 247.60 163.79 65.21
run 21.09 7.00 6.22 3.93
gcc -O3 compile 3125.4 276.77 179.24 71.02
run 21.02 6.95 6.19 3.93

3.2. Common subexpression elimination
In large expressions, the same subexpressions may appear many times. Most of them can be
detected and eliminated by a method of common subexpression elimination (CSE), which takes
time proportional to the input size [8]. Furthermore, for common subexpressions that cannot be
detected by CSE, a “greedy” optimization is implemented. This is more or less similar to the
algorithm in [9, 10] and much slower than CSE.

4. Benchmark
We performed two kind of benchmark tests of the implemented optimization. One is optimization
of the resultant of two polynomials, coming from an example in [11]:

n∑
i=0

aix
i,

m∑
j=0

bjx
j , (2)

which is the determinant of a (m + n) × (m + n) matrix. For this case, we measured the time
used in Form for the optimization, the time used in the compilation and the time to evaluate
the compiled formula 105 times as well as the number of operations in the optimized code.

Table 1 shows a result for m = 7 and n = 6, which gives a 13 × 13 determinant with 43166
terms. One can see that O2 gives a better optimization than O1 with respect to the number
of operations, and O3 gives an even better optimization. On the other hand, increasing the
optimization level takes more time for the optimization. One can also see that the compilation
time as well as the time to evaluate the compiled formula decreases when increasing the Form
optimization level, in all the compiler optimization levels. This result suggests that the best
choice of the Form and compiler optimizations depends on the number of function evaluations
needed in the specific problem, but that Form is more efficient at it than the compiler.

The other benchmark comes from the Grace system [12, 13], which can generate matrix
elements containing one loop diagrams. Each formula corresponds to each diagram and is
expressed in terms of Feynman parameters introduced for the loop momentum integration.
Within the tensor reduction method used in Grace, the coefficient of each combination of
Feynman parameters must be evaluated separately. In this case the best way is to optimize
these coefficients simultaneously, because they may share common subexpressions.

Table 2. Results for three formulas from the Grace system. For the cases that the number of
variables is presented in the form of a sum, the first number is the number of Feynman parameters
and the coefficients of combinations of the Feynman parameters were simultaneously optimized.
For the left column of HEP(σ), Bracket statement was not used. Therefore 35 coefficients
with 11 parameters were merged into an expression with 15 parameters. This was done just for
comparison, even though it does not make a sense for the Grace system.

HEP(σ) HEP(σ) F13 F24

Variables 15 4+11 5+24 5+31
Expressions 1 35 56 56
Terms 5717 5717 105114 836010
Format O0 47424 33798 812645 5753030
Format O1 6099 5615 71989 391663
Format O2 4979 4599 46483 233445
Format O3 3423 3380 41666 195691

For this purpose, one can combine two or more expressions into one expression and use the
Bracket statement just before the optimization:

Symbol u;

Local F, G;

Local H = u * F + u^2 * G;

Bracket u;

where symbol u is used for a label to distinguish the original expressions in F and G. If Bracket
u is used, Form does not perform code optimization with respect to u. Therefore the optimized
code for H still contains u. One can split H into F and G by using the exponent of u.

For the benchmark test, we picked up three formulas of different sizes. We will call them as
HEP(σ), F13 and F24. Table 2 shows the result of simultaneous optimizations for the coefficients
of combinations of Feynman parameters in these formulas.

In some cases, like expressions appearing in physics, the user can do some work before using
the optimization in Form. One may have knowledge about the problem that can be used for
simplification. In the above Grace example, a set of shifts of variables such as

xi → xi + axj , xi → xi + a, (3)

can give a significant improvement for the result.

5. Comparison with other programs
We have compared the code optimization implemented in Form with those of other programs
we had access to, with respect to the number of operations in the output. It is summarized in
Table 3, which shows that Form O3 can give a better result than any other programs.

6. Conclusions
Form is continuously being developed for bug fixes and adding more features. Recently code
optimization was implemented as a new feature. It uses various simplification techniques such
as a multivariate Horner scheme, CSE and so on, and is useful when one needs to numerically
evaluate lengthy formulas repeatedly or one wants to shrink the sizes of executables. MCTS
used in O3 option gives a better optimization than anything we could find in the literature at
some cost of time. This feature will become available as a part of the next version Form 4.1.

Table 3. The numbers of operations after optimization by various programs. Form-n resultants
and a formula appearing in high energy physics (the same one as the left column of HEP(σ) in
Table 2). The number for the 7-5 resultant with ‘Maple tryhard’ is taken from [11]. For the
7-4 resultant they obtain 6707 operations, which must be due to a different way of counting.
The same holds for the 7-6 resultant as [11] (HG + cse) starts with 601633 operations. For
Form O3, the parameter Cp was set as Cp = 0.07 instead of its default value, and 10× 400 tree
expansions were used.

7-4 resultant 7-5 resultant 7-6 resultant HEP(σ)

Original 29163 142711 587880 47424
Form O1 4968 20210 71262 6099
Form O2 3969 16398 55685 4979
Form O3 3015 11171 36146 3524
Maple 8607 36464 - 17889
Maple tryhard 6451 O(27000) - 5836
Mathematica 19093 94287 - 38102
HG + cse 4905 19148 65770 -
Haggies [14] 7540 29125 - 13214

References
[1] Kuipers J, Ueda T, Vermaseren J A M and Vollinga J 2013 FORM version 4.0 Comput. Phys. Commun. 184

1453 (Preprint 1203.6543 [cs.SC])
[2] Tentyukov M and Vermaseren J A M 2010 The Multithreaded version of FORM Comput. Phys. Commun.

181 1419 (Preprint hep-ph/0702279)
[3] Tentyukov M, Fliegner D, Frank M, Onischenko A, Retey A, Staudenmaier H M and Vermaseren J A M

ParFORM: Parallel Version of the Symbolic Manipulation Program FORM (Preprint cs/0407066)
[4] Tentyukov M, Staudenmaier H M and Vermaseren J A M, 2006 ParFORM: Recent development Nucl.

Instrum. Meth. A 559 224
[5] Kuipers J, Vermaseren J A M, Plaat A and van den Herik H J 2012 Improving multivariate Horner schemes

with Monte Carlo tree search (Preprint 1207.7079 [cs.SC])
[6] Kuipers J and Vermaseren J A M (in preparation)
[7] Kocsis L and Szepesvári C 2006 Bandit based Monte-Carlo Planning LNCS 4212 282
[8] Aho A V, Sethi R and Ullman J D 1986 Compilers: Principles, Techniques, and Tools (Addison-Wesley)
[9] Breuer M A 1969 Generation of optimal code for expressions via factorization ACM Commum. 12 333

[10] van Hulzen J A 1983 Code optimization of multivariate polynomial schemes: A pragmatic approach LNCS
162 286

[11] Leiserson C E, Li L, Maza M M and Xie Y 2010 Efficient Evaluation of Large Polynomials LNCS 6327 342
[12] Yuasa F et al 2000 Automatic computation of cross-sections in HEP: Status of GRACE system Prog. Theor.

Phys. Suppl. 138 18 (Preprint hep-ph/0007053)
[13] Fujimoto J et al 2006 GRACE with FORM Nucl. Phys. Proc. Suppl. 160 150
[14] Reiter T 2010 Optimising Code Generation with haggies Comput. Phys. Commun. 181 1301 (Preprint

0907.3714 [hep-ph])

