
Advances in tracking and trigger concepts

Ivan Kisel

Goethe University, 60323 Frankfurt am Main, Germany
FIAS Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
GSI Helmholtz Center for Ion Research, 64291 Darmstadt, Germany

Abstract. Increasing beam intensities and input data rates require to rethink the traditional
approaches in trigger concepts. At the same time the advanced many-core computer
architectures providing new dimensions in programming require to rework the standard methods
or to develop new methods of track reconstruction in order to efficiently use parallelism
of the computer hardware. As a results a new tendency appears to replace the standard
(usually implemented in FPGA) hardware triggers by clusters of computers running software
reconstruction and selection algorithms. In addition that makes possible unification of the off-
line and on-line data processing and analysis in one software package running on a heterogeneous
computer farm.

1. Introduction
Several large international research centers are focused on high-energy physics. Among them are:
CERN (Geneva, Switzerland) with ATLAS, CMS, LHCb and ALICE experiments; BNL (Upton,
USA) with PHENIX and STAR heavy-ion experiments; and FAIR/GSI (Darmstadt, Germany)
with CBM and PANDA future experiments. Focusing on different aspects of high-energy physics
and, therefore, having different structures of their detector setups, e.g. of collider or fixed-target
types, the experiments confront very similar problems in the processing of experimental data.

In addition to physics governed challenges, a new challenge is brought with modern many-
core computer architectures. It requires not only to use new parallel programming languages
and frameworks, not only to understand the computer hardware, but in many cases to develop
new methods, suitable for parallel data streams, and redesign the traditional methods, which
were optimal in the past, now become inefficient running on many-cores.

2. Methods of event reconstruction
Usually the most complicated part of the data processing is the event reconstruction, which
consists of four stages: (1) track finding, (2) track fitting, (3) particle identification and (4)
search for short-lived particles [1]. To cope with the very large combinatorial procedure of
combining one- or two-dimensional hits into five-dimensional particle trajectories, the following
methods are used at the track finding stage: conformal mapping, Hough transformation, track
following and cellular automaton.

The conformal mapping method (Fig. 1) images the measurement space (x, y) onto the
conformal space (u, v) with the transformation:

u = x/(x2 + y2); v = y/(x2 + y2). (1)

Ivan Kisel, Uni-Frankfurt, FIAS, GSI ACAT-2013, Beijing, 19.05.2013 /40

Global Methods: Conformal Mapping + Histogramming

6

Global methods are especially suitable for fast tracking in projections
Example: Collider experiment with a solenoid, where tracks are circular trajectories

x

y

Conformal Mapping:
Transform circles into straight lines

u = x/(x2+y2)
v = -y/(x2+y2)

u

v

φ

 Histogram:
Collect a histogram of azimuth angles φ
Find peaks in the histogram
Collect hits into tracks

φ

Figure 1. An illustrative repre-
sentation of the conformal map-
ping method for particle trajecto-
ries in a cylindrical detector with
homogeneous magnetic field.

Transforming a circle, which passes through the origin of the coordinate system, into a straight
line, the method brings an impressive visual simplification of the problem. This makes finding of
particle trajectories in a homogeneous magnetic field extremely simple. Each step of the method
is easy to implement in hardware, like in an FPGA. For instance, histogramming angles of the
measurements will immediately produce peaks, which correspond to the particle trajectories.
Some complications of the method are: one needs to know the interaction point in advance;
appropriate for uniform magnetic fields only; provides only rough track parameters estimation;
suitable for finding primary tracks, but not secondaries; does not group measurements into track
candidates; needs a significant amount of memory for multidimensional histogramming. Thus,
the conformal mapping method is useful for implementation in hardware for simple event and
trigger topologies.

Ivan Kisel, Uni-Frankfurt, FIAS, GSI ACAT-2013, Beijing, 19.05.2013 /40

Global Methods: Hough Transformation

8

Measurement Space

y = a*x + b

x

y

Parameter Space

b = -x*a + y

a

b

Figure 2. An illustrative repre-
sentation of the Hough transfor-
mation method for a straight line
trajectory.

The Hough transformation method (Fig. 2) images the measurement space (x, y) onto the
parameter space (a, b) with the transformation:

y = a · x+ b;→ b = −x · a+ y. (2)

Now each measurement (x, y) will determine a straight line in the parameter space. An
intersection point of two lines will determine a set of track parameters (a, b). Due to non-
precise measurements and effects of multiple scattering, the straight lines will not intersect each
other in the same point, but produce a cluster of intersection points, that is easy to localize
by histogramming. A situation becomes more complicated when noise hits are present in the
detector or when several or many tracks are registered. In this case to avoid unnecessary
overfilling of the histogram one can work with pairs of measurements, thus filling the histogram
directly with intersection points. The Hough transformation method is a generalization of
the histogramming method and is easy to implement in hardware. Some complications of
the method: needs a global track model; appropriate for uniform magnetic fields only; does
not include effects of multiple scattering; provides track parameters estimations without errors

estimations; does not make competition between track candidates; needs a significant amount
of memory for multidimensional histogramming. As a result, similar to the conformal mapping
method, the Hough transformation method is useful for implementation in hardware for simple
event and trigger topologies.

Ivan Kisel, Uni-Frankfurt, FIAS, GSI ACAT-2013, Beijing, 19.05.2013 /40

Local Methods: Kalman Filter for Track Following

10

Seeding Planes

Ivan Kisel, Uni-Frankfurt, FIAS, GSI ACAT-2013, Beijing, 19.05.2013 /45

Kalman Filter based Track Fit
Track fit: Estimation of the track parameters at one or more hits along the track – Kalman Filter (KF)

r = { x, y, z, px, py, pz }

Position, direction and momentumState vector

Kalman Filter:
1. Start with an arbitrary initialization.
2. Add one hit after another.
3. Improve the state vector.
4. Get the optimal parameters after the last hit.

KF Block-diagram

KF as a recursive least squares method
19

1

2 3

Detector layersHits

π
(r, C)

r – Track parameters
C – Covariance matrix

Initialization

Prediction

Correction

Precision
2

1

3
Kalman Filter

KF Track Fitter

KF Track Finder

Figure 3. An illustrative rep-
resentation of the track following
method.

The track following method (Fig. 3) implements an intuitive approach to reproduce a particle
way, i.e. to move from one measurement to another. One starts from the last detector plane
(probably with the least hit density), takes a measurement and assumes that it belongs to a
track. Taking another measurement on the next to the last detector plane, one gets a shortest
possible track segment, called track seed. Further propagation of the track seed from one detector
plane to another collects measurements into a track group. If several measurements are found
on a detector plane within the propagation region, one creates several branches and follows
them as separate track candidates. If a detector plane has no measurement within the region of
propagation, the current track candidate is deleted, and the procedure is repeated with the next
seed (or the next track candidate within the branch). During the track following one can apply
the Kalman filter track fitting procedure in order to get simultaneously the estimations of the
track parameters and the covariance matrix. Traditionally, development of a new experiment
starts with an ideal Monte-Carlo track finder and a realistic Kalman filter track fitter, then it
is easy to implement the realistic track finder as track following based on the Kalman filter,
thus combining track finding and track fitting. In addition, for a developer it is psychologically
easy to accept the hit-by-hit track finding approach. Some complications of the method: it is
intrinsically based on a single track assumption; needs the seeding stage; efficiency is limited by
the detector efficiency and the seeding efficiency; works at the hit level and forces random access
to the hits; after discarding a track candidate can often repeat the same calculations; no global
competition between track candidates; limited by the exponential grow of the combinatorial
enumeration at high track densities. The track following method is extensively employed in the
LHC experiments.

The cellular automaton method (Fig. 4), which can be regarded as a local version of the
Hopfield neural network, also creates short track segments, but, contrary to the track following
method, it does it between all pairs of detector planes (stage 1). Then it does not work anymore
with hits, but with the created segments. Applying a track model (straight line on the illustrative
figure) it introduces relations between the segments on neighboring pairs of detector planes in
case they have a common hit and a small kink angle. Then it counts consecutively the neighbor
segments with their possible position on a track candidate (stage 2). After the tree structure
appeared, starting from the last segments with the largest position counters it collects the
neighboring segments into track candidates (stage 3). At the last stage the track candidates
are fitted with the Kalman filter and selected according to the χ2-value. Local operations with
data bring us to a parallel implementation of the algorithm. The implementation is staged from
hits to segments and to track candidates, thus step-by-step collecting the tracking information
on the fly. A second order polynomial behavior is observed at high track densities. The track
competition stage is naturally included in the algorithm. Some complications of the method:

Ivan Kisel, Uni-Frankfurt, FIAS, GSI ACAT-2013, Beijing, 19.05.2013 /40

Local Methods: Cellular Automaton as Track Finder

12

0. Hits

1. Segments

1 2 3 4
2. Counters

3. Track Candidates

4. Tracks

Cellular Automaton:
1. Build short track segments.
2. Connect according to the track model,
 estimate a possible position on a track.
3. Tree structures appear,
 collect segments into track candidates.
4. Select the best track candidates.

Figure 4. An illustrative repre-
sentation of the cellular automa-
ton method.

staged algorithm need synchronization after each stage; parallel implementation of the algorithm
requires from a developer to have an expert skill in parallel computer architectures, which come
into the market only now. The cellular automaton method is successfully used in several heavy-
ion experiments.

Figure 5. An illustration of the
Kalman filter based track fitting
algorithm.

Found tracks are then fitted using the Kalman filter method [1]. The Kalman filter (1) starts
with an arbitrary initial approximation (Fig. 5); (2) adds hits one after the other; (3) refines
the state vector ~r of track parameters and gets the optimal values of the track parameters after
the last hit. There is a set of fitting procedures based on the Kalamn filter. The simplest one,
described above and called track fitter, one obtains the state vector ~r of track parameters and
the covariance matrix C in an outer (first or last) measurement. The Kalman smoother provides
the state vector and the covariance matrix in an inner point of the trajectory. For some tracks
of high importance for physics analysis one can apply the deterministic annealing filter (DAF),
which is based on the Kalman filter and iteratively reduces weights of noise of wrongly associated
hits in order to improve the quality of the track parameters estimation.

3. Many-core HPC: cores, threads and vectors
Nowadays, the complexity of event topologies lead to a necessity of using complicated
reconstruction algorithms already on-line in the high-level triggers (HLT). In addition, in order to
cope with high interaction rates one needs to equip an HLT farm with modern high-performance
computing (HPC) hardware (Fig. 6). These are many-core central processing units (CPU) with
dozens of cores and graphics processing units (GPU) with thousands of arithmetic units. For
efficient use of the many-core hardware one has to implement the algorithms in a parallel manner.

Ivan Kisel, Uni-Frankfurt, FIAS, GSI ACAT-2013, Beijing, 19.05.2013 /40

4xXX cores XXXX cores

1+8 cores>50 cores

Intel/AMD CPU ATI/NVIDIA GPU

Intel Xeon Phi IBM Cell

Future systems are heterogeneous

• Optimized for low-latency access to cached data sets
• Control logic for out-of-order and speculative execution

• Optimized for data-parallel, throughput computation
• More transistors dedicated to computation

• General purpose RISC processor (PowerPC)
• 8 co-processors (SPE, Synergistic Processor Elements)
• 128-bit wide SIMD units

• Many Integrated Cores architecture announced at ISC10 (June 2010)
• Based on the x86 architecture
• Many-cores + 4-way multithreaded + 512-bit wide vector unit

15

Many-Core CPU/GPU Architectures

Figure 6. Future HPC systems are heterogeneous.

To illustrate the complexity of the HPC hardware, let us consider a single work-node of an
HLT computer farm, a server equipped with CPUs only. Typically it has 2 to 4 sockets with 8
cores each. In case of Intel CPUs, each core can run in parallel 2 hardware threads (processes),
that increases the calculation speed by about 30%. The arithmetic units of CPUs operate with
vector registers, which contain 4 (SSE), 8 (AVX) or 16 (MIC) data elements. Vectors realize
the SIMD (Single Instruction, Multiple Data) paradigm, that means they apply an operation to
a vector as a whole, giving a speed-up factor of 4/8/16 with respect to the same operation, but
with a scalar. In total, a pure hardware potential speed-up factor of a host is:

f = 4 sockets · 8 cores · 1.3 threads · 8 SIMD ≈ 300, (3)

which is already equivalent to a moderate computer farm with scalar single-core CPUs.
Porting an algorithm to a parallel hardware requires usually reworking of the algorithm from

the ground up. It includes numerical optimization, memory optimization and parallelization,
that brings another 10 to 100 or even up to 1000 speed-up factor.

Thus, the HPC architecture makes possible use of complicated reconstruction and selection
algorithms already at the HLT level. In addition, on-line and off-line data reconstruction,
selection and analysis become very similar or even identical, that provides enormous flexibility
and compactness of a computer farm.

4. Parallel programming
Parallel programming is, first of all, a parallel formulation of an algorithm, and only then its
implementation in a parallel language. The hardware provides us two levels of parallelization: a

task level parallelism working with cores and threads, and a data level parallelism working with
SIMD vectors.

At the task level parallelism one localizes independent parts of the algorithms and run them
in parallel on different cores or threads with or with our synchronization between the processes.
Implemented it can be using, for instance, the ITBB or OpenMP frameworks.

If the algorithm allows to organize parallel streams of data, which are processed in the same
way, like fit of several tracks, these parts can be SIMDized and run without using an extra
hardware, but on vectors within the same threads. For that one can use the auto-vectorization,
which is provided by the compilers. Unfortunately, this brings typically (and unpredictably)
about 20% of speed-up, which is almost negligible comparing to the potential factor 4/8/16. In
order to reach the maximum (depending on the data level parallelism of the algorithm), one
can program using the SIMD extensions directly or using the SIMD header files or the much
advanced Vc library.

The SIMD header files overload the SIMD instructions inlining the basic arithmetic and logic
functions, that makes the code compact and easy readable. An illustrative example of a simple
code for calculation of a polynomial function of the first order, which is written using SSE
instructions, is:

__m128 y = _mm_add_ps(_mm_mul_ps(a,x),b);

The same function, but implemented using the SIMD header file, recovers the scalar-like form:

fvec y = a*x + b;

with overloading

friend fvec operator+(const fvec &a,

const fvec &b) {

return _mm_add_ps(a,b); }

friend fvec operator*(const fvec &a,

const fvec &b) {

return _mm_mul_ps(a,b); }

in the SIMD header file.
The header files provide a simple and flexible SIMD implementation with respect to different

CPU architectures. It keeps the program code in a scalar-like form, while the CPU specific
SIMD extensions are hidden in the header files, which can be chosen automatically depending
on the CPU type. Also a header file with the true scalar implementation exists, that allows to
make the conventional debugging and testing of the code.

The OpenCL standard provides a higher level of parallel programing by writing a universal
code, which can be run on different types of CPU and GPU processing units. Thus, it
provides a portable and efficient access to heterogeneous computer platforms. The OpenCL
standard supports both vectorization and parallelization between cores of CPUs and GPUs.
The vectorized code in OpenCL looks similar to the previous example:

float4 y = a*x + b.

5. How to parallelize reconstruction in running experiments
Parallelization is a very non-trivial task, but parallelization of the algorithms in running
experiments is a real challenge, to which we have to respond within the next years. In addition
to all hardware and software complications described above, the experiment has to run stably
and predictably, as this is of vital importance for the physics programme. Different experiments
have chosen different strategies for parallelization of the reconstruction software (Table 1), that

ATLAS Modify the existing code
CMS Implement a new search algorithm
ALICE Merge the on-line and off-line codes
STAR Use an existing algorithm as seed finder
CBM Develop a new code from scratch

Table 1. Strategies of parallelization in different experiments.

are the most appropriate to provide them a smooth transition to an efficient use of the many-core
computer architectures [2].

ATLAS will modify the existing code by numerical and computational optimization, multi-
threading and auto-vectorization. The HLT reconstruction software will be gradually integrated
with the off-line code.

CMS plans to overcome the current tracking limitations of the combinatorial track following
by the parallel implementation the Hough transformation algorithm.

ALICE will use the tracks, found by the cellular automaton track finder in HLT, as seeds for
the off-line track following algorithm based on the Kalman filter.

STAR is decided to use the cellular automaton track finder as seed finder for the track
following algorithm based on the Kalman filter in off-line and to replace in HLT the Hough
transformation algorithm by the same cellular automaton track finder, thus providing mutually
reproducible results in on-line and off-line data analysis.

CBM, as a future experiment, profits from the possibility to design and develop a new code
from scratch, investigating different approaches. The experiment assumes full identity both in
software and hardware between the off-line and on-line reconstruction, selection and analysis of
data. Current track finding in CBM is based on the cellular automaton approach.

6. CBM: First Level Event Selection
To demonstrate some typical and specific features of the tracking and trigger concepts, let us
consider the current status of the First Level Event Selection (FLES) [3] of the CBM experiment
(see a simulated central Au-Au collision on Fig. 7). It is similar to HLT in other experiments,
but since in CBM there is no previous stages of data selection, it has a different name in order to
emphasize its first (and, actually, the last) level of selection. Thus, FLES combines all traditional
stages of triggering.

The FLES package consists of several modules (the block diagram is shown on Fig. 8): track
finder, track fitter, particle finder and physics selection. As an input the FLES package receives
a simplified geometry of the tracking detectors and the hits, which are created by the charged
particles crossing the detectors. Tracks of the charged particles are reconstructed by the Cellular
Automaton (CA) track finder [4] using to the registered hits. The Kalman filter (KF) based
track fit [5] is used for precise estimation of the track parameters. The short-lived particles,
which decay before the tracking detectors, can be reconstructed via their decay products only.
The KF particle finder, which is based on the KFParticle package [6] is used in order to find
and reconstruct the parameters of short-lived particles by combining already found tracks of
the long-lived charged particles. The KF particle finder also selects particle-candidates from
a large number of random combinations. In addition, a quality check module is implemented,
that allows to monitor and control the reconstruction process at all stages. The FLES package
is platform and operating system independent.

The FLES package in the CBM experiment will be performed for the on-line selection and
the off-line analysis on a dedicated many-core CPU/GPU farm. The farm is currently estimated
to have a compute power equivalent to 60 000 modern CPU cores. The FLES algorithms have

Figure 7. A simulated central Au-Au
collision at 25 AGeV energy in the CBM
experiment with about 1000 charged particles
(different colors correspond to different types
of particles).

Figure 8. Block diagram of the FLES package.

to be therefore local and parallel with respect to data and thus require a fundamental redesign
of the traditional approaches to event data processing in order to use the full potential of
modern and future many-core CPU/GPU architectures. Massive hardware parallelization has
to be adequately reflected in mathematical and computational optimization of the algorithms.
In order to reflect the specific features of the CBM experiment, the track segments in the
track finder are created from hits in each three consecutive detector stations to reconstruct the
particle momentum. To recover a possible detector inefficiency, hits in the track segments can
be also separated by one inefficient station. The track finding procedure is organized in several
iterations to make the reconstruction fast and reliable in presence of a high track density: at
the first iteration only high-momentum primary tracks are reconstructed, at the second one —
low-momentum primary tracks, and then — all other tracks. After each iteration all used hits
are removed from further consideration, thus significantly reducing the combinatorics, which is
extremely high due to the use of double-sided strip detectors.

Figure 9. Efficiency of the track
reconstruction for minimum bias
Au-Au collisions at 25 AGeV.

For evaluation purposes a reconstructed track is assigned to a generated particle, if at least
70% of its hits have been caused by this particle. A generated particle is regarded as found, if

it has been assigned to at least one reconstructed track. If the particle is found more than once,
all additionally reconstructed tracks are regarded as clones. A reconstructed track is called a
ghost, if it is not assigned to any generated particle according to the 70% criterion.

Efficiency of the track reconstruction for minimum bias Au-Au UrQMD simulated collisions
at 25 AGeV is presented on Fig. 9. In addition the track reconstruction efficiencies for different
sets of tracks and ratios of clones (double found) and ghost (wrong) tracks are shown in Table 2.
The tests have been performed on a server with Intel Xeon E7-4860 CPUs.

Efficiency, %

mbias central

All tracks 88.5 88.3

Primary high-p tracks 97.1 96.2

Primary low-p tracks 90.4 90.7

Secondary high-p tracks 81.2 81.4

Secondary low-p tracks 51.1 50.6

Clone level 0.2 0.2

Ghost level 0.7 1.5

Reconstructed tracks/event 120 591

Time/event/core 8.2 ms 57 ms

Table 2. Track reconstruction efficiency for minimum bias and central events

The Kalman filter is intensively used in the combinatorial part of the CA track finder,
therefore its fast implementation on modern CPU/GPU computer systems and stability in single
precision are crucial. Starting from the idea of using the SIMD unit of modern processors, the
KF track fitting algorithm was examined aiming to increase the speed of the CA track finder
as a part of the FLES event reconstruction. After the detailed optimization of the memory
utilization and the numerical analysis, the KF algorithm had been vectorized [5]. To optimize
the memory usage, a magnetic field approximation is used for particle propagation instead of
the full magnetic field map, which takes about 70 MB and therefore does not fit into the CPU
cache memory. The magnetic field is approximated with a polynomial function of fifth order
at each detector station. During the fit of a track the field behavior between the stations is
approximated with a parabola taking field values at the three closest measurements along the
track. To stabilize the fit, an initial approximation of the track parameters is done by the least
square estimator assuming a one-component magnetic field. The first measurement is processed
in a special way, which increases the numerical stability of the method in single precision: the
equations were simplified analytically using a special form of the initial covariance matrix. The
track propagation in the non-homogeneous magnetic field is done by an analytic formula, which
is based on the Taylor expansion [7]. The analytic formula allows to obtain the same track fit
quality as the standard fourth order Runge-Kutta method, while being 40% faster. Operator
overloading has been used to keep flexibility of the algorithm with respect to different CPU/GPU
architectures. All these changes have increased the processing speed of the SIMD KF track fit
algorithm down to 1 µs per track. This is an improvement by a factor 10000 with respect to the
original scalar version of the algorithm [5].

The CBM experiment is an experiment with a forward geometry along Z-axis and, therefore,
has a typical set of tracks parameters: x and y track coordinates at a reference z-plane,
tx = tan θx and ty = tan θy are the track slopes in the XZ- and Y Z-planes, q/p is an inverse

Figure 10. Residuals and pulls distributions of the x (43.2 µm, 1.12) , tx (0.30 mrad, 1.18)
and q/p (0.93 %, 1.32) track parameters.

particle momentum, signed according to the charge of a particle.
Residuals of the track parameters are determined as a difference between the reconstructed

parameters and their true Monte-Carlo values. The normalized residuals (pulls) are determined
as the residuals normalized by the estimated errors of the track parameters. In the ideal case
these should be unbiased and Gaussian distributed with width of 1.0. Thus the pull distributions
provide a measure of the track fit quality.

The residuals and the pulls for all track parameters are calculated at the first hit of each
track. The distributions for the x, tx and q/p parameters together with their Gaussian fits are
shown on Figure 10 (the results for y and ty are similar). All distributions are not biased with
pulls widths close to 1.0 indicating correctness of the fitting procedure. The slight deviations
from 1.0 are caused by several assumptions made in the fitting procedure, mainly in the part
of the detector material treatment. The q/p pull is the widest being the most sensitive to these
simplifications.

The high track finding efficiency and the track fit quality are crucial, especially for
reconstruction of the short-lived particles, which are of the particular interest for the CBM
experiment. The reconstruction efficiency of short-lived particles depends quadratically on the
daughter track reconstruction efficiency in case of two-particle decays. The situation becomes
more sensitive for decays with three daughters and for decay chains. The level of a combinatorial
background for short-lived particles depends strongly on the track fit quality. The correct
estimation of the errors on the track parameters improves distinguishing between the signal and
the background particle candidates, and thus to suppress the background. The ghost (wrong)

tracks usually have large errors on the track parameters and therefore are easily combined with
other tracks into short-lived particle candidates, thus a low level of ghost tracks is also important
to keep the combinatorial background low. As a result, the high track reconstruction efficiency
and the low level of the combinatorial background improve significantly the event reconstruction
and selection by the FLES package.

The search for the short-lived particles is done in one go, thus minimizing access to the
memory. Together with the optimization and vectorization of the code this allows to achieve a
high speed even in a presence of a huge combinatorics. The speed of the KF particle finder per
core on a server with Intel Xeon E7-4860 CPUs is 1.4 ms per minimum bias Au-Au collision and
10.5 ms per central Au-Au collision at 25 AGeV.

The FLES package has been parallelized with ITBB implementing the event-level parallelism
by executing one thread per logical core. Reconstruction of 1000 minimum bias Au-Au UrQMD
events at 25 AGeV has been processed in each thread. In order to minimize the effect of the
operating system each thread is fixed to a certain core using the pthread functionality provided
by the C++ standard library. Fig. 11 shows a strong scalability for all many-core systems
achieving the reconstruction speed of 1700 events per second on the 80-cores server.

Figure 11. Scalability of
the FLES package on many-core
servers.

7. Summary
Modern and future many-core computer architectures open new perspectives in tracking and
trigger concepts. At the same time, efficient use of the hardware requires much higher computing
experience and consolidation of efforts of different experiments.

References
[1] Frühwirth R et al 2000 Data Analysis Techniques for High-Energy Physics. Second Edition, Cambridge Univ.

Press
[2] Fourth International Workshop for Future Challenges in Tracking and Trigger Concepts, CERN, 28-30

November 2012
[3] Kisel I, Kulakov I and Zyzak M 2013 Standalone First Level Event Selection package for the CBM experiment

IEEE Trans. Nucl. Sci., vol. 60, no. 5, pp. 3703–3708
[4] Kisel I 2005 Event reconstruction in the CBM experiment Nucl. Instr. and Meth., vol. A566, pp. 85–88
[5] Gorbunov S, Kebschull U, Kisel I, Lindenstruth V and Müller W.F.J 2008 Fast SIMDized Kalman filter based

track fit Comp. Phys. Comm., vol. 178, pp. 374–383
[6] Gorbunov S and Kisel I 2007 Reconstruction of decayed particles based on the Kalman filter CBM-SOFT-

note-2007-003, GSI, Darmstadt
[7] Gorbunov S and Kisel I 2006 Analytic formula for track extrapolation in non-homogeneous magnetic field

Nucl. Instr. and Meth., vol. A559, pp. 148–152

