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Abstract. The second part of the two-part account of the enabling technologies behind a 

successful completion of the Troitsk-nu-mass experiment, summarizes an almost 20 years' 

experience of using Oberon/Component Pascal in complex applications ranging from the 

cutting-edge computer algebra (b-quark decays etc.) to experimental data processing (neutrino 

mass etc.) to exploratory algorithm design work (the optimal jet finder etc.) to systematic 

computer science education (the international project Informatika-21). 

1.  Introduction 

The currently best ν mass bound was published by the Troitsk-ν-mass experiment [1]. This happened 

after the experiment had been plagued by the so-called “Troitsk anomaly” for about 10 years. The 

anomaly melted away after a reanalysis that was made possible by two enabling technologies:  

the statistical method of quasioptimal weights for parameter estimation (see a companion talk [2]) and 

the Oberon technologies for software development reviewed in the present talk. 

In regard of software, everything could in theory have been done with fortran or even C++ but at a 

much higher cost. A proper technique is about minimizing effort while attaining the best result; such a 

technique is rooted in how well one understands the basic principles of what one is doing. The success 

of the reanalysis proves soundness of the adopted approach towards software development. 

In fact, a complete reanalysis of the Troitsk-ν-mass data [1] was not planned. The initial purpose 

was only to implement a new statistical method [2] and to play with real data with a view to clarify the 

treatment of the Poisson background as a test of the new method. The software development tool was 
chosen to be a derivative of the Oberon System [3] known as the BlackBox Component Builder [4], 

[5], [6]. It was known from a previous experience with the BEAR computer algebra engine [7] to be 

easy to use, efficient, safe, flexible and producing a clean compiled code (a combination of features 

shared by all Oberons). The resulting piece of software proved — as a result of adhering to the 
principles of the underlying system [3], [8] — to be easy to operate, safely extensible, adaptable and 

efficient enough that the testing of the new method grew into a complete reanalysis of the data. The 

successful completion of [1] within the severe manpower and other limitations that the Troitsk-ν-mass 

team operated under, is proof of the sound rationality behind the minimalistic Oberon as opposed to 

the prodigal complexity of the mainstream tools. 

The software used in [1] was designed to be generic enough so that it could be used as a 
supplemental material for my university programming course. The course is part of the educational 

project «Informatika-21» [9]) that promulgates scientific rationality for the professional and general 

(physicists’, linguists’ etc.) IT education in the form of a unified backbone of algorithmics/program-



 

 

 

 

 

 

ming courses spanning students of ages 11-20 and based on a single perfectly designed programming 

platform — Oberon. In the capacity of coordinator of the «Informatika-21» project, I enjoyed the 

privilege of discussing the matters of software development in general and programming education in 

particular, with a considerable number of excellent experts (rocket scientists, compiler optimization 

gurus, UAV designers, school teachers, university professors, etc.; cf. [10]). As a result, my views of 

the subject have sharpened compared with the earlier talk [5].  

2.  The IT bubble of excessive complexity 

I would like to discuss software development from the point of view of a “non-professional” 

programmer, i.e. one for whom computer programming is not a full-time job but part of application 

problem solving. That using a computer inevitably leads to a full-blown programming in complex 

applications is seen from the fact that all significant software packages develop script languages. Such 

languages are usually poorly designed, inefficient and unreliable. They also limit access to the low 

level programming and thus do not allow one to utilize the full power of the computer. The resulting 

two-tier programming model (an “efficient” system level with the notoriously unsafe C/C++ and a 

somewhat less unreliable but inefficient application level with a multitude of special purpose 

languages) represents an unnecessarily complicated environment that prevents non-professional 

programmers from exploiting their knowledge of the application problem domain to the full. There is, 

as a result, a vast grey area where programming problems are excessively hard for non-professionals 

to tackle with the complicated mainstream tools, yet a recruitment of a professional programmer 

cannot be justified. 

The surging complexity of the IT industry tools is visualized in the following figure (based on one 

borrowed from [12]) 

 
 

Figure 1. The syntax volume of some programming languages. 



 

 

 

 

 

 

The figure is not intended to compare the complexity of various programming languages but only 

to convey an idea of the IT industry’s growing bubble of complexity. The figure is complemented by 

the so-called Wirth’s Law stating that the software gets slower faster than the hardware gets faster. 

The only line that goes down in the figure is the one corresponding to the languages designed by 
Niklaus Wirth and his school at ETH, Zürich, who for many years have been combatting the 

complexity of programming and programming languages. But let us discuss the bubble first; it is 

important to understand its nature because, quite obviously, some fundamental forces are at play. 

3.  Understanding the IT complexity bubble  

There are two causes of the excessive IT complexity bubble visualized in Figure 1.  

1. The first cause is the combinatorial nature of normal intellect. (The adjective normal is 

chosen to correlate with the normal science of Thomas Kuhn [13].) This was observed in a multitude 

of experiments conducted by primatologists and zoopsychologists starting from Wolfgang Koeler in 
the early XX c. This means that the basic mechanism of intellect is to find a (finite) combination of 

known actions with the objects within view in order to achieve a desired goal. If a combination is not 

found whereas the goal remains in view, one gets restless and roams around, which brings new objects 

into the scope of one’s attention thus increasing chances of finding the solving combination. Thus, the 

normal intellect tends to pile up things and objects, to add patches and props to bring the prospective 

solution closer to the target — a phenomenon well seen e.g. by observing how kids do their programs. 

They are reluctant to go back to their program in order to simplify it once it seems to do what is 

required. A habit of cleaning up the mess — which may require a critical ability in order to separate 

what is important and to be left from what is not and to be discarded — has to be learned either by 

painful experiences (the Kalashnikov Principle: Excessive complexity is vulnerability) or via a proper 

training. The parallels with Figure 1 are quite obvious, with an additional complication that the 

cleaning up of the mess in that case may mean redesigning the language. Such a redesign the industry 

— together with their customers — are reluctant to do for stated reasons of compatibility, even if a 

redesign would in the long run be beneficial to all. 

A related point worth making here to explain the steep rise of the curves in Figure 1, is that with 

the IT, the normal/combinatorial intellect has for the first time in the history of Humanity been largely 

freed from the restrictions of the resistance of materials. 

2. The other, social reason is that the excessive complexity creates what economists call 

asymmetry of information. This serves as a source of an extra economic and social rent derived by 

IT experts (cf. the Nobel Prize for economics awarded to Akerlof, Spence and Stiglitz in 2001 for their 

analysis of the market of used cars with “the bad driving out the good” in the market). It is not, for 

example, uncommon to observe a youngster who proudly pontificates about software development and 

programming educaton in virtue of having simply acquired an amount of knowledge about obscure 

features of an overly complex mainstream tool. The youngster’s less computer savvy companions may 

indeed start to regard and treat him as a true expert. This example is actually a paradigmatic one for a 

good part of the IT industry. 

Alchemy preceded chemistry and astrology preceded astronomy. In the absence of an established 

IT education system based on a scientific foundation, there is no reason why the fast expanding IT 

sphere should be any different. Indeed, the bubble visualized in Figure 1 testifies to the fact that the IT 

industry passes through a parascientific stage characterized by a paradoxical if implicit assumption 

that the growing complexity of programming languages and tools might help one solve the key 

problem of software development — the one of controlling the complexity of software.  



 

 

 

 

 

 

4.  What is Oberon/Component Pascal 

Oberon remains the only systematic research project to have successfully identified a minimal rational 

core of technologies for efficient software development. It perhaps deserves to be called anti-language 

due to its contrast with the typically bloated mainstream languages. 

Oberon descends from the old Pascal of 1970 via Modula-2 (in fact, Modula-2 might have been 

described as Pascal-80, and Oberon, as Pascal-86). However, one should beware of myths and wrong 

associations because Oberon is a fundamentally more powerful language than either Pascal or 

Modula-2 because of its automatic garbage collection. That feature, however, does not prevent it from 

being a fast compiled language: the garbage collection is only invoked when dynamic memory 

allocation is used. Oberon is also a fundamentally safer language (no segviols, ever) because it extends 

the strict static type safety mechanism to dynamic records. 

There is a number of Oberon dialects (cf. the fact that the exact position of an optimum may be 

hard to pinpoint precisely due to its instability with respect to minor changes of the optimum criteria): 

the original ETH Oberon [3], Active Oberon [14], Oberon-2 (available as XDS Oberon [15]), 

Component Pascal (a 1997 refinement of Oberon-2 from Oberon microsystems, Inc. available with the 

BlackBox Component Builder [4] as well as the Gardens Point Component Pascal compiler for 

Microsoft.NET [16]), Oberon-07 (with a 2011 revision available from [17]). Most of the above are 

available in open source. All these languages are very small and for the purposes of the present talk 

will be referred to as Oberon/Component Pascal.  

— Oberon/Component Pascal can be described as a “vanishing” imperative programming language 

with everything that can be put away into libraries excluded from the language; the remaining 

language core is designed with utmost care, with unlimited, safe and efficient extensibility in mind. 

— The language is very small, its syntax rules fit on one page, and the language report is only about 

twenty pages long plus or minus a few pages depending on the dialect. 

— A very fast one-pass compiler produces a clean compiled code with no compiler-generated 

overhead which normally requires an optimization to get rid of as is the case e.g. with C++,  (Floating 

point optimization is available via an external tool [15].) 

— The language is highly readable in the Pascal tradition, and carefully designed to be robust against 

typing errors. 

— It is statically type safe, including dynamic records. 

— It features independently compiled modules that serve as units of information hiding, are dynami-

cally linked and (un)loaded; as a result, the programming system gives one an interactive feel despite 

being based on a true compiler. 

— It is object-oriented via a very efficient basic mechanism of single record extension. 

— It is automatically garbage collected, which together with record extensibility makes it a synthetic 
language with flexibility comparable to that of functional languages (as proved e.g. by the BEAR 

computer algebra engine [5], [7]). 

A popular argument in the discussions of programming languages is that functional languages are 

higher level than imperative ones. However, farther from hardware does not necessaritly mean closer 

to human, as is easily seen when one tries to teach kids. In fact, high level application problems are 

synthetic in nature, combining elements of imperative, functional and markovian (substitutions-based) 

paradigms. The hardware, however, is imperative, so a synthetic language based on the imperative 

paradigm, such as Oberon, offers a clear advantage in regard of  efficient use of the hardware. 

A superior readability and semantic transparency of Oberon are also relevant for the concept of 

open source. Indeed, access to program sources is essential for its adapation to changing requirements. 

The most adaptable is the code that is the most accessible. The most accessible code is one written in 

the simplest language. Ergo, the Oberon code is more open than the C++ code in proportion to how 

Oberon is simpler and more readable than C++. 



 

 

 

 

 

 

5.  Why Oberon technologies rather than just a programming language 

Every tool — even as simple as a hammer — requires a proper technique to use it efficiently, i.e. to 

achieve the best results with minimal effort and maximal safety. Tools and techniques come together, 

and a proper balance is key. (If one is not aware of one’s technique, it is probably best described as 

chiropractic.) 

This observation is highly relevant for a complicated tool such as programming language. To make 

the most of Oberon the language one should use a proper development environment and possess a set 

of basic algorithmic skills (see below).  

An Oberon development environment supports the text-as-interface paradigm: any text document 

can serve as a command prompt, and any text fragment can be designated as program input (similar to, 

but much more flexible than the command line parameters). Then text documents can serve as 

flexible, customizable menus, and simultaneously as storage for various sets of parameter values — a 

feature of great usefulness in applications involving parameter fitting, optimizations, etc. 

Lastly, instead of learning defects and peculiarities of a big language, one invests effort into basic 

algorithmics [18], into learning Dijkstra’s method to construct complex loops [19], and basic archi-

tectural patterns (Carrier-Rider, separation of interface from implementation, the message bus, etc.). 

6.  Bridging efficiency and flexibility  

A popular conference topic in the 80s was the so-called numerical-analytical interface. The funda-

mental problem here is that numerical applications that are usually handled with fortran etc. tend to 

require flexibility of dynamic data structures as more adaptive intellect is built into the algorithms. 

Such a flexibility, however, used to be only available via the functional languages. On the other hand, 

large-scale computer algebra tasks, usually handled via dynamic languages, may benefit greatly from 

compiled routines. This is illustrated by the following figure: 

due to
garbage collection

due to clean compiled code

 
Figure 2. The flexibility vs efficiency dilemma. 

One small, simple and reliable Oberon covers both bases, and does what is usually achieved via 

complex (and inherently less reliable) combinations such as C++ and python, or fortran and 

Mathematica, etc. 

The success of Java at the expense of C++ in the late 90s proved the latter’s vulnerability due to its 

complexity — in a complete agreement with the above mentioned Kalashnikov Principle. Yet the 

high-energy physics community chose C++ as a successor to fortran. Note that by 1992, the Oberon 

System that never had a segviol had been ported to a dozen platforms, an optimizing XDS compiler 

was already available, and in 1993 the full Oberon functionality was made available in the popular 

operating systems. In view of these facts and after 20 years’ experience of software development, it is 

hard not to regard the adoption of C++ as a gross failure of the HEP community as a scientific 

community.  



 

 

 

 

 

 

7.  Conclusions 

A central problem of software development is controlling the complexity of software. The problem is 

partly rooted in the way the human brain operates and is fostered by the asymmetry of information in 

the absence of a proper programming education system. Containing the gratuitous growth of 

complexity must be a permanent concern whenever the information technologies are involved. 

Such a containment starts with a proper choice of the programming language and related tools. There 

is abundant and various experience to support the notion that a minimalistic language designed with 

utmost care is key to efficient development of reliable software. Such a minimalistic language is 

bound to resemble Oberon modulo insignificant syntactic variations that are more likely to be defects 

of design than anything else (cf. the recent Google’s Go [20]). Such defects would be least tolerated 

by non-professional programmers and in the educational context.  
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