Experience, use, and performance measurement of the
Hadoop File System in a typical nuclear physics analysis
workflow

E Sangaline! and J Lauret?
"Physics Department, University of California Davis, Davis, CA 95616-5270, USA
Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

E-mail: sangaline@nuclear.ucdavis.edu

Abstract. The quantity of information produced in Nuclear and Particle Physics (NPP)
experiments necessitates the transmission and storage of data across diverse collections of
computing resources. Robust solutions such as XRootD have been used in NPP, but as the
usage of cloud resources grows, the difficulties in the dynamic configuration of these systems
become a concern. Hadoop File System (HDFS) exists as a possible cloud storage solution
with a proven track record in dynamic environments. Though currently not extensively used in
NPP, HDEFS is an attractive solution offering both elastic storage and rapid deployment. We
will present the performance of HDFS in both canonical I/O tests and for a typical data
analysis pattern within the RHIC/STAR experimental framework. These tests explore the
scaling with different levels of redundancy and numbers of clients. Additionally, the
performance of FUSE and NFS interfaces to HDFS were evaluated as a way to allow existing
software to function without modification. Unfortunately, the complicated data structures in
NPP are non-trivial to integrate with Hadoop and so many of the benefits of the MapReduce
paradigm could not be directly realized. Despite this, our results indicate that using HDFS as a
distributed filesystem offers reasonable performance and scalability and that it excels in its
ease of configuration and deployment in a cloud environment.

1. Introduction

Most modern NPP experiments currently utilize the ROOT framework for data analysis and binary
ROOT files for storage [1]. The ROOT distribution includes XRootD which is a highly scalable and
fault-tolerant distributed storage solution designed as an extension of ROOT’s built in rootd file server
[2]. XRootD is commonly used in conjunction with ROOT and has reliably handled the storage and
analysis requirements of a number of experiments over the years. The configuration of XRootD does
not, however, lend itself to applications where resources are being dynamically added and removed on
short time scales. While exploring options for more flexible scaling of computing resources with
virtualization we have found that XRootD is best suited for relatively static allocations of resources.
This has motivated us to investigate other possibilities for distributed filesystems that are better suited
for dynamic scaling.

Hadoop is a software framework for the distributed storage and processing of large data sets [3]. It is
maintained as an open source project by the Apache Software Foundation and implements many of the
ideas behind Google’s MapReduce and Google File System (GFS) [4]. The underlying technology was

designed to achieve robust scalability on commodity hardware and thus has redundancy, fault
tolerance, and flexibility in deployment built in as key features. These aspects have played a
significant role in Hadoop’s adoption in industry where it is used to store and analyse datasets that are
large even by NPP standards. For example, the Large Hadron Collider (LHC) produces 15 PB of data
per year while Facebook’s Hadoop clusters grow by over 150 PB of data per year [5], [6]. The success
of Hadoop in handling storage and cluster growth of this magnitude makes it a possible candidate for
consideration within NPP applications.

We aim to evaluate the performance of the Hadoop File System (HDFS) with respect to the needs of
NPP and our experiences with dynamic resource allocation [7]. This work serves to complement prior
investigations of HDFS’s applicability in NPP by evaluating additional access methods and further
investigating 1/O scaling [8], [9].

2. Testing Environment

For the purposes of testing, a cluster of 25 nodes was constructed. A Xen kernel under Scientific
Linux 5.9 was installed as the host system and a guest virtual machine was configured on each node
and allocated one core of a dual core 1.8 GHz AMD Opteron Processor, 4 GB of RAM, four 2 TB
drives, and a 1 Gb/s network interface attached to a 1 Gb/s switch [10]. The virtual nodes were
configured to run CentOS 5.9 with the full STAR software environment. Apache Hadoop 1.1.2 was
deployed on the virtual cluster using a 64 MB block size as well as MapR’s commercial distribution of
Hadoop with an M5 evaluation license. MapR required direct access to the four storage drives while
for Apache Hadoop the drives were instead configured as a RAID 5 array formatted as ext3.

Using the Hadoop client and accessing the local filesystem directly were used as baselines to assess
the relative overheads of Hadoop itself and of the various access methods. It should be noted that a
libhdfs plugin is now available in ROOT but that compatibility issues prevent the STAR environment
from being used with newer versions of ROOT. Instead, several different methods for mounting HDFS
and accessing it through standard POSIX libraries were configured:

e Fuse-DFS. A mountable interface to HDFS based on the Filesystem in Userspace project
(FUSE) [11].

e HDFS NFS Proxy. A project which allows HDFS access via an NFS server [12].

e MapR. A proprietary alternative which also allows the filesystem to be mounted via NFS [13].

3. Tests and Results

A variety of tests were run to get a basic comparison of the reliability and access rates for the different
methods. The systems were configured to drop caches before and after each test and to include sync
times in the performance measurements. The I/O speeds were investigated as a function of file size,
replication, and the number of active clients. Unless otherwise noted, all rates refer to sequential file
access.

For single client file access it was found that there was little change in I/O rates with the replication,
although this does not include the time for full replication to be reached. Local disk write rates
saturated at 30 MB/s while the Hadoop client saturated at 24 MB/s and both HDFS NFS Proxy and
Fuse-DFS saturated at around 12 MB/s. Write operations would mainly be used for importing data
files into a cluster and with the Hadoop client this would bring relatively low overhead. The read rates
can be seen in figure 1 where we notice considerable overhead relative to local disk access. It was
found that HDFS NFS Proxy had serious stability issues with file sizes above 200 MB.

Single Client Read Rates

g’; m |Local Disk | m Replication 1
= go| ™ Hadoop - = = =
@ & Replication 2 -
5 ® Fuse HDFS Renlioation 3 s =
¥ eplication
T 70 NFS Proxy P =
E - n "
80_— | v
: “,
[|
50— u
- ~
-]] E &
“F T L i R
30 'D* {f Ner
- "
20— _
- [&
10:_ fh_ ‘t ¥ iy
-:V 2 Ly
[ﬂy_u_n_lﬂ'u.ﬂ‘!'l "I el 1 Ll 1 [|
L 10 10° 10° File Size (MB)

Figure 1. The read rates for various access methods as a function of file size.

The multiple client read rates offerinsight into the scalability in the situation where multiple analyses
might need to access the same files. From figure 2 we find that for all interfaces the total read rate
scales linearly with the number of clients, even as the number of clients grows considerably larger
than the replication. We also find that MapR significantly outperforms the other interfaces for reading.

Multiple Machine, Multiple Client Read Rates

=1000
“ s MapR m Replication 1
= m Hadoo
:900 P &« Replication 2
3 ® Fuse HDFS o }
E 800 NFS Proxy | ¥ Replication 3 f
@ —
& 700 H
= C)
2 600 ‘
500 I}}f ot
E . T®
400 TR W7 mll
-] i* u] P
300 ut R
= mtY ¥ t+ wmt =
- !1T L & []
- m4 L L
200 — Y ln; liY = i
— & b
100E sy mf "
E mi & it
= I | ‘| | | |
% 2 4) 8 10
of Clients

Figure 2. The scaling of read rates as a function of number of clients for a single 1 GB file.

HDFS was designed for sequential access and, because of this, the previously discussed rates are
larger than what we would expect for non-sequential reads. To get a more realistic view of what sort
of performance we could expect we created 1 GB ROOT files containing Au+Au events and wrote
analysis code within the STAR framework to run over them. The code applies basic event quality cuts
and fills several histograms, tasks that would be typical of a simple physics analysis. Running these
analysis on the Hadoop virtual cluster yielded interesting results which can be found in table 1. Fuse-
DFS is comparable in performance to local disk access and significantly outperforms MapR, contrary
to the tests with sequential reads.

Table 1. STAR Analysis Rates

Access Method Read Rate (MB/s)
Fuse-DFS 9.9+/-0.1
MapR 3.1+/-0.1
Local Disk 9.7+/-0.6

4. Conclusions and Outlook

We have performed basic performance testing for various HDFS access methods in the context of a
virtualized cluster for NPP analysis. There is further work to be done in terms of understanding
performance under more realistic conditions but we can already form some important conclusions.

We were able to quickly and easily configure and deploy Hadoop images on new machines. When
switching between MapR and Hadoop we were required to frequently make changes in disk and server
configurations, to format HDFS, and to repopulate the cluster with files. Nodes were trivial to deploy
and large data files could be transferred into the cluster with little overhead and with replication
handled automatically. Qualitatively speaking, this was all relatively straightforward and satisfies the
properties we were looking for in something that could be easily deployed on short timescales.

Our multiple client testing demonstrated linear scaling beyond the replication, and in the future we
will run more extensive tests in order to understand how saturation will occur. Tests run which
performed actual analysis tasks found the analysis rate for Fuse-DFS to be consistent with local disk
access and to outperform the proprietary MapR. This result is very promising and offers hope that
performance in actual applications might be better than in the sequential tests. Overall, we find that
HDFS would likely make a viable distributed filesystem for quick deployment of NPP analysis
clusters and hope to continue our studies to better understand performance under saturation conditions.

5. Acknowledgements

We would like to acknowledge and thank the DOE and NSF for funding that supported this work as
well as the University of California Davis and Brookhaven National Laboratory for resources that they
made available.

References

[1] Moneta L et al. 2008 Recent developments of the ROOT mathematical and statistical software
J. Phys.: Conf. Ser. 119 042023

[2] XRootD http://xrootd.slac.stanford.edu/

[3] Apache Hadoop http://hadoop.apache.org/

[4] Ghemawat S, Gobio H and Leung S-T 2003 The Google File System Proc. 19" ACM
Symposium on Operating Systems Principles

[5]
[6]

[7]

(8]
[9]

[10]
[11]
[12]
[13]

Kanti P 2009 Black Holes at the LHC Lecture Notes in Physics 769 387-423

Under the Hood: Scheduling MapReduce jobs more efficiently with Corona
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-
mapreduce-jobs-more-efficiently-with-corona/10151142560538920

Borthakur D 2013 Hdfs architecture
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

Bockelman B 2009 Using Hadoop as a grid storage element J. Phys.: Conf. Ser. 180 012047

Riahi H et al. 2012 Using Hadoop File System and MapReduce in a small/medium Grid site
J. Phys.: Conf. Ser. 396 042050

The Xen Project http://www.xenproject.org/

Filesystem in userspace http://fuse.sourceforge.net/

HDFS NFS Proxy https://github.com/cloudera/hdfs-nfs-proxy

The MapR Distribution for Apache Hadoop
http://www.mapr.com/Download-document/7-MapR-White-Paper

